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ABSTRACT

In this paper, we' investigate the problem of selecting, from k( 2) m-sided dice, the
fairest die. The fairest die is the one corresponding to the smallest (unknown) value of

m

0i = _ (plj - -)2 wh,re p-i denotes the jth cell (face) probability for the ith die. The
j=1 I

proposed selection proceaures are based on Schur-convex functions. The problem is stud-
ied in the context of the subset selection approach. For small samples case, a method for
finding conservative solutions for the selection constants is given. Large sample approxi-
mations have also been provided. A related problem of selecting all good populations is
also investigated. A procedure for selecting the die with the greatest bias is also proposed
and studied. Tables of constants necessary to carry out the procedure for selecting the
fairest die are given.

Key Words and Phrases: Subset selection procedures; multinomial distribution; best pop-
ulation; majorization; Schur-convex; Schur-concave; good populations. " "' : - ."-
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1. INTRODUCTION

It frequently happens in problems concerned with ranking and selection that, whatever

the original formulation or purpose of the experiment, the actual outcome is the rejection

of certain processes and the acceptance of the remaining processes as being superior with

respect to a desired characteristic. We shall try to formalize this in the special case when

the observations are from multinomial distributions. For example, when bets are to be

placed on the outcomes of an m-sided die, we are interested in the problem of finding

which of the several dice is the fairest. Let p = (Pi,...,pm) be an unknown vector, where

pi denote the probability of the ith outcome when we throw an m-sided die. How to

characterize and select a fair die is the main concern in this kind of problem.

In practice, a Schur-convex or Schur-concave function of p may be appropriate. There

are two measures of diversity of a multinomial population which have been commonly used.

They are Shannon's entropy and Gini-Simpson index. The notion of the entropy function

was introduced by Shannon (1948). The Gini-Simpson index was introduced by Gini

(1912) and Simpson (1949). Both these indices are Schur-concave functions of p.

Gupta and Huang (1976) have studied the problem of selecting the population with

the largest entropy function when m = 2. Gupta and Wong (1975) have considered

the problem of a selection procedure based on a Schur-concave function for selecting a

subset containing the population with the largest entropy. Dudewicz and Van der Meulen

(1981) have studied a selection procedure based on a geiE-a1 ,ed entropy function. More

recently, Alam, Mitra, Rizvi, and Saxena (1986) have studied telection procedures based on

Shannon's entropy function and Gini-Simpson index using the indifference zone approach.

Rizvi, Alam, and Saxena (1987) have also considered a subset selection procedure based

on diversity indices.

FoL m = 2, i.e. the binomial case, Sobel and Starr (1975) studied a selection procedure

based on the criterion 1Pi - -1. In this paper, we discuss the general case for m > 2. We
m

may use the criteria (Pi - _L)2 or max fpi - - Our main goal is to define (optimal)
i=I m <i<m m

subset selection procedures based on 0= (Pi - ):. Note that 6 is a Schur-convex
=1
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function and is equivalent to the Gini-Simpson index. It should be pointed out that in our

paper we make some improvements for the derivation of the results of Rizvi, Alam, and

Saxena (1987). Our proofs are stronger and more general. It should be noted that since

the majoiization is only a partial order relation, we need to make some assumptions about

the parameter space.

Let 7r1,..., 7rk denote k dice with unknown probability vectors p,' ""P respectively,
m

wherep, (pm,...,pi ), m > 2, Pij -0, E Pjj = 1, i= 1,...,k. We define
j=1

m

, (p) (Pj - 1)2 (1.1)

j=1

and

Let 011 ... < 0 [kj denote the ordered values of 01,... ,Ok. It is assumed that the

exact pairing between the ordered parameters O,'s and the unordered 0i's is unknown.

The unknown population associated with the smallest parameter 0[11 is called the best

population. Our goal is to define a selection procedure which selects a non-trivial, non-

empty subset of {r,, ... , 7rk} and satisfies the basic probability requirement, that is,

inf P(CS) > P* (1.2)

where k - ' < P* < 1 and CS stands for a correct selection, that is, the selection of a subset

which includes the best population.

In Section 2, we formulate the problem, define the selection procedure, and study its

properties. In Section 3, we consider the problem of selecting all good populations. In

Section 4, we propose and study a procedure for selecting the die with the greatest bias.

Tables of constants d = d(k, n, m, P*) are provided for m = 2 and selected values of k, n

and P*.

2. SELECTING THE FAIREST DIE

Suppose that we have n indcperdcnt observatioas from each of the k dicr'. Lot X,

denote the number of outcomes of the jth side in the ith die. Then X i = (X11 ,...,Xim)
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follows as a multinomial distribution with parameters n and p, = (Ptl,... ,Pm). We

will denote it by X - M(n,p.). We are interested in the population associated with

the smallest parameter 8[11, where 0, is defined by (1.1). A reasonable estimator of 0i is

Y = o(-! X) and a natural selection procedure R, is proposed as follows:

Rj: Select 7ri if and only if Yi <_ min Y + d, where d is the smallest non-negative number
l j'k

such that the probability requirement (1.2) is satisfied.

In order to find the d-value, which depends on k, n, m, and P*, we need some

lemmas. For the definition of majorization and basic properties, see Marshall and Olkin

(1979). In the following, we will use x < y to mean that x is majorized by y.

Lemma 2.1. (Rinott (1973))

Let X - A(n,p) and 0(j) be a Schur-convex (Schur-concave) function of x. Then

E(¢(X)) is a Schur-convex (Schur-concave) function of p.

Lemma 2.2. Let X - M(n,p) and ?P(x) be a Schur-convex (Schur-concave) function of

x. Then P{V(- X) < c} is a Schur-concave (Schur-convex) function of p. Similarly,

P{c < 0(-1 X)} is a Schur-convex (Schur-concave) function of p.

Proof. Define 0(1:) = I{(i. _)<e, where 1A is the indicator function of the set A. Then

apply Lemma 2.1.

Lemma 2.3. If O(x) is a Schur-convex (Schur-concave) function of x and X - M(n,p).

Then P{Vk( x) - d < V,(-L X)} is a Schur-concave (Schur-convex) function of x when p

is fixed.

Proof. If _x < y, then x) < 0(1 y) and

Hence

P 1 0(1y)-d<OiX}< PJt(A1)-d 4j!X)}.

Theorem 2.4. P(CSIRI) is a Schur-concave function of P(0) when all other p ( 0 1,

are kept fixed and is a Schur-convex function of p U), j : 1, when all other _p M j,.
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are kept fixed, where p W)denote the probability vectors corresponding to the unknown

population with parameter O[j] and statistic Y().

Proof. P(CSIR,) = P{Y(1) < Y(j) + d, j = 2,...,k}

E{P{Y(i) - d < Y(j), j =2,...,kIY(l)}}.

Now

P LY() -d < Ye, j = 2,..1.,kY(,) 

=P{ l) d <Y(j), j=2, ... , k
n

-- P 1lx --d <Y(y). (2.1)

j=2

By Lemma 2.3, when pU), j : 4 1, are fixed, then (2.1) is a product of non-negative Schur-

concave functions of x and hence a Schur-concave function of x. Then, by Lemma 2.1,

P(CSIR1 ) is a Schur-concave function of P(1). Also, by Lemma 2.2, each term of (2.1) is

a Schur-convex function of p (). Hence the result of the other part follows.

Since majorization is only a partial order relation, to simplify the problem, we may

assume that there exists some i such that- <P. ' j =1,...,k, j # i. For our problem,

this assumption is reasonable because we expect that there exists a fair die. The following

theorem provides the main result of this section.

Theorem 2.5. Let f11 = _= (pl,.,p) E 12P( 1 ) <P() j = 2,...,k} and 20 =w

(p,...,p) [ 12}. Then

inf P(CSIRI) = inf P(CSIRI). (2.2)
01 f2o

Proof. By Theorem 2.4 and the assumption p~ )' j<P 2,..., k, the infimum is

attained when P( 1) = "'" =

Although we have found the relation in (2.2), we still do not know the exact point

p at which the infimum is attained. For small samples case, we consider a conditional

procedure which is similar to the one proposed by Gupta and Huang (1976) to overcome

this difficulty.
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In the following, we may assume that X,,... ,Xk are i.i.d. because P(CSIRI) occurs

at 11o. Then

km

xil,. .., xi" M(nk, p).

For t = (t1,...,t) k, j = 1,..., j 1.,m and .tj = nk, let
j=1

k

where E" denotes the summation over the set of all m-tuples (si ,., Sime) such that 0 <
k m

sij < n, L ,.,,j =1..m sij = tj, 3' E ,.,n sij = n, I=1,.,
i---1 j=l

and

s < min p + d
n 2<jik n-

for some constant d(t) depending on t. It is easy to prove the following lemma.

Lemma 2.6. Let M(k,d(t). L, m, n) be defined as in (2.3). Then

P 0 -(1  <,: min p 1Xj + d(t) 3i j j= L,...,im
n2 - 2<i<k ( i =tj[\nk

=M (k, d(t), t, rn, n)/ t ,. .,k

is independent of p.

Using Lemma 2.6, we have the following result.

Theorem 2.7. For given P* and each t, let d(t) be the smallest number such that

M(k, d(t) t, m, n) > t,,.nk P (2.4)

and let

d = max d(t),

then

infP(CSIRI) > P*.
no
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Proof. inf P(CSIRI)~o

_ P 0 X, < min p( X)+d ZXj tj = 1,...m
--n- 2<i<k n:

P Xj= t j, J= 1,....,IM--=1=

k

S p Xii t= j 1...,m M (k, d(t), t, m, n) , t

>p".

Remark: For small samples (k and n are both small), for given P* and t, we can easily

determine the smallest d(t) satisfying (2.4). From these, we have computed tables of d-

values for m = 2, k = 2(1)7, n = 2(1)15, P* = 0.75, 0.80, 0.90 and 0.95, which are given

at the end of the paper.

For large samples, the above computation involves a lot of computation time. Hence,

in th.e following large samples approximations are considered.

We know that -1 X is asymptotically multivariate normal with mean vector p

(p,... ,P,,) and covariance matrix E = (aij), where aii= n pi(1-pi) and aij = -gpipj, i

J. Then Vn(( X) -p(p)) is asymptotically normal with mean 0 and variance

I: 1 - '<93 2 ai0pi==l i<j

=4 - (2.5)
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Theorem 2.8. For large n, we have

fOOd

infP(CSIR1) ; inf f 0 k-l ( + -- d4(x) (2.6)
, o (P))

where -O(x) is the cdf of the standard normal and "z" means approximately equal.

Proof. Let Zi = V/n(o(± Xj)- (p))/n(p.), i k1,...,k, then Zi, i =1...,k are

asymptotically i.i.d. N(O, 1). By Theorem 2.5, we have

infP(CSIRI) = infP(CS Rj)

=infP Z < Zj + (p-- j = 2,...,kn (P
inf ib k - I + 'n ) d-O(x).

Remark: Rizvi, Alam, and Saxena (1987) pointed out that

sup an(p) n(p 0 ),

where p0 = (po,... ,Po, 1- (m - 1)po) and

5m - 2 + (9m2- 4m + 4) (2.7)
8m(m- 1)

Hence the value d can be found by using the equation

S -X + -p0) d4(x) = P*. (2.8)

The integral (2.8) has been tabulated by Bechhoter (1954), Gupta (1963), and Gupta,

Nagel and Panchapakesan (1973).

If we don't make the assumption "P(1 ) < P j = 2,..., k", we consider some partial

solutions based on some other restrictions. Firstly, we consider the approach suggested

by Rizvi, Alam, and Saxena (1987). For convenience, we assume that Ir is the best

population. Let

Z#m-T+l] = min Pim-r+l] , s = 1,... ,m, (2.9)
2<i<k ) flnr] 11..9M

r=1 r=1
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where Pi[m-,+il is the (m - r + 1)st smallest components of p. Then we can determine

a vector y such that -< PiI i = 2,...,k, and if there is a p<p,, i = 2,...,k, then p< .
-- - _ n - - --

Since is Schur-convex, we have (_) _ p(p), i 2,... ,k. We will consider the problem

under the parameter space

2 = ! = (P. ..-j p( ,) < -o( )< p ( ), I= 2,. ..k .

We note that if pI <Pi i = 2,...,k, then p1 <p and hence p(p 1 ) < p(p). Hence the

parameter space 112 includes the parameter space considered by Gupta and Wong (1975).

In the following, we will give a clearer proof of Theorem 4.1 in the paper of Rizvi,

Alam, and Saxena (1987).

Theorem 2.9. The infimum of P(CSNR1 ) over f12 is attained when p.--, i = 2,..., k and

Proof. By Theorem 2.4, P(CSIRI) is a Schur-convex function of p,, i = 2,...,k. Let
P(CSIR 1 ) = f(p1, P2,"".,pk)'thenf(PlP2'"'Pk) 

- f(Pfp P) For w-- (p 'P)

G £2, we have op,) _< o() < p (p.), i = 2,...,k. If p(pl) < p (5), let p, := (PI,P2,...,Pn).

Pi < P2 < ... < pmo. For c > 0, consider p (P1 -E, P2,...,pm-1, Pm -E), then

P < P . By Theorem 2.4 again, we have f(P1 ' P"'".) > f(P, /,... , ). Now take
(v - k,-,, > P+C -(,, -p +2(p( ) , _p)
(" p, )2 2(W(P)-V(p ))11/2 > 0. Then cp(p_) = p(p) and f(pl,..,_k) >

f(p, ,P, ,). This completes the proof of the theorem.

Remark: For large samples approximation, it is easy to see that

[00 _1 k - I (P) __n-
inf P(CSIRI) z inf X1k - __) i d4(z) (2.10)

n2(;q)qwhere the infimnum on the right side of (2.10) is over all vectors p and q for which p(p)

In the following we wili approximate the infimum of the probability of a correct selec-

tion under some restrictions.

Theorem 2.10. inf P(CSIRI) ;, inf P(CSIRI), where2 = {(p,... ,p) flolp = (p,. ..,p),
0 0;

q = - (m - l)p}.

9



Proof. Without loss of generality, we will assume that p(i) = pi 1,... ,k and pl <

Pi2 <- < Ptm. We know that
(1) < p. < p (2) (2.11)

where
p(1) ( -ptr Pn p im ir

and (2.12)

p( = (p, 1... ,pj I - (m - 1)p, ).pi'"

Let P(CS Rj) == f(P1' 'Pk)" By Theorem 2.4, we have

f (Rp(2) P(1) ,... (I) (1),p(2)'.. p (2))1(_ -2 .-_k" f_ (I',_, .. ,_" ' < " ) ,S f. _E -2-

Let

=(p -p 1-, p) (mp-1) 2t'(p) = M m - 1'" M - 1' p ( -- m --- ' ( .3

then p (p) is a continuous strictly increasing function of p whenever p > -. Hence there

exist p* such that
p(1) _ < (2) i , k

rn -m i m -i '"

where p. = (pi,... ,pi,qi) and o(p*) = tp(p,). Moreover,

(2),~ (0() : ., E1'(2)... ()

By Theorem 2.4, there exists a p* = (p,... , p, q) such that

PP<P* i=2.... ,k,

and

If f (-t-2," ,k) - f(p*, p*,... ,p*), the result follows. Otherwise

(E- ()11 1 .P('))  f I(E ,E2 ,1 k) <(1 ( 2()
(P '2' --k f  ( ) ,(2)

-- 1 "' - E --2 '' ' -k

10



We may tolerate the difference between f(_p1 ,p 2 ,... '--Ek) and f(p*, p*,... ,p*) and still use

this as a lower bound. Hence inf P(CSIRI) - inf P(CSIRI).
0 0.0

Remark: For large n, we have

00
inf P(CSIRI ) z. inf ok-I X + 1 dP(x)

-f k-I (+± ) (p(),

where p0 is defined by (2.7).

For m = 2, p, (p, 1 - pi), i = 1,... ,k and p(p) = 2(p, - 1)2. Since we are

dealing with the problem concerned with Schur-concave and Schur-convex function, we

may assume that pi > -, i 1 k. Hence

p(p,) _<5 (p.) if and only if pi < p3

and fl = 0l1 in this case. By Theorem 2.5, we have

inf P(CSIRI) = inf P(CSIRI).
0 no

Thus, the infimum of P(CSIRi) is attained when p, = ... = Pk = p. For small samples

case, we can solve it by using Theorem 2.7. For large samples case, we solve

f 0 ok -1 + d0 )dt(x) =-P

where po = (2 + Vi)/4.

3. SELECTING A SUBSET WHICH CONTAINS ALL

GOOD POPULATIONS
m

Let iri - M(n,;.1,, p = (Pil,... ,Pm), 0 < Pij < 1, Zpi, = 1, i = 1,...,k.
j=1

m

We define 7'i as a rs)od population if p(p) = E (pij - 1)2 < 6 and a bad population
j=1

if p(p) > 6, where 0 < 6 < 1 - -±- is prespecified. Our goal is to define a selection

procedure which selects a subset of {?rl,..., 7rk} such that the selected subset contains all

11



good populations with probability at least P*. With the same notation as that in Section

2, we propose a natural selection procedure R 2 as follows:

R 2 : Select 7ri if and only if 1 X) < c, where 6 < c is the smallest constant such that

infP(CSIR 2) > P*. (3.1)

Let G = {p = (P1,... ,Pm)1O < Pi _ 1, pi 1, p(p) < 6} denote the parameter

space of good populations. We assume that there are k, (unknown) good populations,

1 < k, < k. Without loss of generality, we assume that p,...,_pk E G. Then we have the

following Lemma:

Lemma 3.1. Let X - M(n,p) and g(p) = P{p(- X) < c}, c > 0. Then

inf g(p) = inf g(p), (3.2)

PEG- pEGo

where Go = {p E Gj[p(p) = 6}.

Proof. For p E G, if p(p) < 6, we take

(P1 - PM) + V/(Pm - p) 2 + 2(6 -
2 >0,

then

p< p and p(p.) = 6,

where

P- 6, p - ,P2,...Pm-1, Pm + C), P1 :5 P2 <_.._ Pro.

By Lemma 2.2, g(p) is a Schur-concave function of p. Hence

g(p) > g (P.

This completes the proof of the lemma.

In order to overcome the difficulty of partial order relation, we consider the parameter

space G, defined by

G, = {p E Glp < p,, p(p 6 ) < 6},

12



where p6 is known or unknown.

For the case when p6 is known, we have g(p) > g(p 6 ) for all p G G1 . Hence

inf g(p) = g(p6). (3.3)
pEGC

Further, we have the following result:

Theorem 3.2. Under the parameter space G 1, we have

inf P(CSIR 2 ) > (g(p6))k.

The value c can be taken as the solution to the equation

gC(p') = p*i/k (3.4)

If p6 is unknown, by using the same arguments as that in the proof of Lemma 3.1, we

may assume that p(p) = 6. For large n, we have

g(P') =M P{1 X) < c}

n

Hence the value c can be taken as the solution to the equation

ID (Vi(c - 6)) -P*i'k (3.5)

where po is defined in (2.7).

Also, for each p = (P 1 ,pm), P1 < P2 < . Pm, we have p(l) <p<p(2 ), where

p('), i = 1, 2 are defined as in (2.12). Given A > 0, we define

GA = {E E IIP(EC2)) - PWI A}.

Then we have the following result:

13



Lemma 3.3. inf g(p) > inf g*(p), where p(p) = (-P i-P ) andpEG,, - - (p< +A-- '' ' -l P

g' (P) =9 g(M- I""I'm-I'

Proof. For p e GA, we may assume that p(p) = 6. Since p(1) <p<p(2), we have

g(p) > g(p(2 )) and p(p) <_ (P(2)

Further, l (p(2 )) - O(_) I < z, so O(p( 2)) < 6 + A.

Remark: g is a Schur-concave function, hence

inf g(p) > g*(p), (3.6)
pEGA

where p = + M-t(b + A).

Theorem 3.4. Under the parameter space GA, we have

infP(CSIR 2) > (g*(p))k,

where p + V!-1(6 + A). The value c can be taken as the solution to the equation
g*(p) = p /k .

For large samples, we have the following result:

Theorem 3.5. For large n, under the parameter space GA, we have

infP(CSIR 2 ) P 4 (r (m

whereu2 (5) is defined in (2.5) and = (-P 1_ ) + V/M (6

Proof. We may assume that V(p) = 6. Then

M.p )"

Under p(p) = b, o'(p) = 4 p_ + S)2 is a Schur-convex function. Furthermore,

O(p) n o (p*) for some p* = (p,... ,p,q). As a function of q, an(p*) is increasing in q.

Thus

sup 2 (p!) < or 2

pEG

14



where ," IP ,- P = +  +

When m =- 2, p(p,) < if and only if pi < - + \16. (Note that we assume that

pi > 1 again). Hence, inf g(p) =g(PO), where O -) Moreover,Pi > pEG - -- _= -_ oevr

inf P(CSIR 2) = (g(jO))k .

4. SELECTING THE DIE WITH THE GREATEST BIAS

In this section, let , = -(p) be as defined by (1.1). We are now interested in the

largest parameter O[k], that is, we wish to select the die with the greatest bias. Following

the same notation as that in Section 2, we propose a natural selection procedure R 3 as

follows:

R 3 : Select iri if and only if Yi > max Y" -dj, where d is the smallest non-negative number
1<j<k

such that the probability requirement (1.2) is satisfied and where, as before, Yj = p(i X).

Analogous to the proof of Lemma 2.3, we have the following result.

Lemma 4.1. If _(x) is a Schur-convex (Schur-concave) function of x and X .- M(n,p).

Then P{O(! X) < d + V(1 x)} is a Schur-convex (Schur-concave) function of x when p

is fixed.

If we define

f13 (2 = (P C:al2P(i) <P(k), j ,...,k-1}. (4.1)

Analogous to Theorem 2.4 and Theorem 2.5, we have the following results:

Theorem 4.2. P(CSIR 3 ) is a Schur-convex function of p(k) when all other p(0 i : k, are

kept fixed and is a Schur-concave function of p j 5 k, when all other p( t j, are

kept fixed.

Theorem 4.3. inf P(CSjR3) = inf P(CSIR3 ).
U3 1o



mFor t = t , . tn ,0<_tj < nk, j = 1,...,m and T_ tj = nk, let
j: I

kf,(k ( n1-[2
M(k,d )tm, n) i~r Si7 l ( .. ISi)(42

t=1

where E-* denotes the summation over the set of all m-tuples (sil,..., sirn) such that 0 <
k mSij <_ n, I= 1,...,k, 15 = 1 ... ,Im , L Sij = tj, 11 1 ... ,IM l E sij = n, z = 1,...,k

i=I j=1
and

_s ~kJ max o sj -d(t)

n - n /

for some constant d(t) depending on t. Analogous to Theorem 2.7, we have the following

result:

Theorem 4.4. For given P* and each t, let d(t) be the smallest number such that

M (k, d tm, n$)_ _ > (tl,...rk, t'jP. (4.3)

and let

d max d(t),

then
infP(CSIR3) 

> P*.
n~o

For large samples approximation, we have the following result:

Theorem 4.5. For large n, we have

infP(CSIR3 ) ;z inf bk-1 X + d-(x). (4.4)

03, _P f- <, (19)

Remark: The value d can be found by using the equation (2.8) when d is replaced by d.

If we don't make the assumption "P() <P( i = 1,... ,k- 1", we consider some

partial solutions based on some other restrictions. For convenience, we assume that 7rk is

the best population. Let

YP[m-r+iJ = 1<i<k-l (:Pijm-l 1 19 = 1i,...,m (4.5

r=l - - r
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where pj,-r+1] is the (m - r + 1)st smallest components of p.. Then we can determine a

vector such that _p, 1,...,k-1, and if there is a psuchthatp, <p, i = I,...,k-i,

then P<p. Since p is Schur-convex, we have p(p,) < W , 1,. .. ,k - 1. We will

consider the problem under the parameter space

nl4 -- { = (P,, l ,.pk Ip(p,) _ W(:) <_ p(p,), i = 1,... ,k - 1}. (4.6)

We note that ifP, <Pk' 1,...,k - 1, then O<Pk and hence W( ) (Pk). Hence the

parameter space 04 includes the parameter space 013. Analogous to Theorem 2.9, we have

the following result:

Theorem 4.6. The infimum of P(CSIRs) over 04 is attained when p. = 5, = 1,..., k - 1

and W(p1 ) ... = W(pk).

Proof. The only difference is replaced p_ by &, where

'P = (pi + CP2..qr -1jr

and- (Pm - Pi) - [(pn - Pl) 2 - 2((pk) - 1 / 2

2

Note that E > 0 provided that 2e <Pm - P1.

Remark: For large samples approximation, we have

inf p(CSR3) ;n, inf 00 o k -i aS-'X + _kn_- dt.(x) (4.7)
04 ppq f-0 ( () _n () ()(4)

where the infimum on the right side of (4.7) is over all vectors p and q for which p (p) = (q).

Analogous to Theorem 2.10, if we tolerate some loss, we may have the following result.

Theorem 4.7. inf P(CSIR3) , inf P(CSIR3).n no

Remark: For large n, we have

inf P(CSIR) L'k( X + (0)) )

where pO is defined by (2.7).

17
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Table I. Table of d-values for the procedure RI.

rT= 2

k2 3 4 5 6 7

2 o*=.75 .5000 .5000 .5000 .5000 .5000 .5000
.80 .5000 .5000 .5000 .5000 .5000 .5000
.90 .5000 .5000 .5000 .5000 .5000 .5000
.95 .5000 .5000 .5000 .5000 .5000 .5000

.75 .4444 .4444 .4444 .4444 .4444 .4444

.80 .4444 .4444 .4444 .4444 .4444 .4444

.90 .4444 .4444 .4444 .4444 .4444 .4444

.95 .4444 .4444 .4444 .4444 .4444 .4444

.75 .3750 .3750 .5000 .5000 .5000 .5000

.80 .5000 .5000 .5000 .5000 .5000 .5000

.90 .5000 .5000 .5000 .5000 .5000 .5000

.95 .5000 .5000 .5000 .5000 .5000 .5000

.75 .3200 .4800 .4800 .4800 .4800 .4800

.80 .4800 .4800 .4800 .4800 .4800 .4800

.90 .4800 .4800 .4800 .4800 .4800 .4800

.95 .4800 .4800 .4800 .4800 .4800 .4800

.75 .2778 .4444 .4444 .4444 .4444 .4444

.80 .4444 .4444 .4444 .4444 .4444 .4444

.90 .4444 .4444 .4444 .5000 .5000 .5000

.95 .5000 .5000 .5000 .5000 .5000 .5000

7 .75 .2449 .4082 .4082 .4082 .4082 .4082
.80 .4082 .4082 .4082 .4082 .4082 .4082
.90 .4082 .4082 .4898 .4898 .4898 .4898
.95 .4898 .4898 .4898 .4898 .4898 .4898

8 .75 .2500 .3750 .3750 .3750 .3750 .3750
.80 .3750 .3750 .3750 .3750 .3750 .3750
.90 .4688 .4688 .4688 .4688 .4688 .4688
.95 .4688 .4688 .4688 .4688 .4688 .5000

9 .75 .2469 .3457 .3457 .3457 .3457 .3457
.80 .3457 .3457 .3457 .3457 .3457 .3457
.90 .4444 .4444 .4444 .4444 .4444 .4444
.95 .4444 .4444 .4444 .4938 .4938 .4938

10 .75 .2400 .3200 .3200 .3200 .3200 .3200
.80 .3200 .3200 .3200 .3200 .3200 .3200
.90 .4200 .4200 .4200 .4200 .4200 .4200
.95 .4200 .4200 .4800 .4800 .4800 .4800

11 .75 .2314 .2975 .2975 .2975 .2975 .2975
.80 .2975 .2975 .2975 .2975 .2975 .2975
.90 .3967 .3967 .3967 .3967 .3967 .3967
.95 .3967 .3967 .4628 .4628 .4628 .4628
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Table I (continued).

m=2

2 3 4 5 6 7

n= 12 P*=.75 .2222 .2778 .2778 .2778 .2917 .2917
.80 .2778 .2778 .2917 .2917 .2917 .2917
.90 .3750 .3750 .3750 .3750 .3750 .3750
.95 .3750 .3750 .4444 .4444 .4444 .4444

13 .75 .2130 .2604 .2604 .2604 .2840 .2840
.80 .2604 .2604 .2840 .2840 .2840 .2840
.90 .3550 .3550 .3550 .3550 .3550 .3550
.95 .3550 .3550 .4260 .4260 .4260 .4260

14 .75 .2041 .2449 .2449 .2449 .2755 .2755
.80 .2449 .2449 .2755 .2755 .2755 .2755
.90 .3367 .3367 .3367 .3367 .3367 .3367
.95 .3367 .3367 .4082 .4082 .4082 .4082

15 .75 .1956 .2311 .2311 .2311 .2667 .2677
.80 .2311 .2311 .2667 .2667 .2667 .2677
.90 .3200 .3200 .3200 .3200 .3200 .3200
.95 .3200 .3200 .3911 .3911 .3911 .3911
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